Grafowe sieci neuronowe. Teoria i praktykaCicha rewolucja, która nadeszłaGrafowe sieci neuronowe (ang. graph neural networks, GNN) to klasa modeli uczenia głębokiego przeznaczona do analizy danych o strukturze grafowej. W początkowym okresie ich rozwój ograniczał brak efektywnych metod projektowania i optymalizacji; w ostatnich latach bariery te w dużej mierze zostały pokonane, co przełożyło się na dynamiczny postęp teorii i praktyki. Modele GNN znajdują zastosowanie między innymi w analizie sieci społecznościowych, optymalizacji procesów logistycznych, marketingu i pracy z bazami wiedzy.Ta książka zawiera kompleksowe opracowanie tematyki sieci grafowych w kontekście uczenia maszynowego. Tym samym wypełnia istotną lukę na polskim rynku wydawniczym, oferując połączenie solidnych podstaw teoretycznych z praktycznym zastosowaniem GNN. To przewodnik, który systematycznie przeprowadza przez kolejne zagadnienia związane z sieciami grafowymi:od narzędzi klasycznej analizy grafów w środowisku Pythona i wybranych zagadnień teorii grafówprzez wprowadzenie do grafowych sieci neuronowych, a także przegląd wybranych warstw splotu grafowego i dobrych praktyk ich projektowaniapo zagadnienia związane ze szkoleniem sieci GNN i praktyczne przykłady ich zastosowań
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?