Każdy, kto się zetknął z językiem Python, wie, że jest on prosty i przyjazny dla programistów, ale ma też swoje ograniczenia przy pracy z dużymi wolumenami danych szybko pojawiają się problemy z wydajnością i ze skalowaniem. Niekiedy pomaga mocniejsza konfiguracja sprzętowa, jednak najczęściej kluczowe jest zastosowanie odpowiednich technik programistycznych i właściwych narzędzi.
Dzięki kolejnemu, poszerzonemu i zaktualizowanemu wydaniu tego praktycznego podręcznika zdobędziesz wszechstronną wiedzę o czynnikach wpływających na wydajność kodu. Dowiesz się, jak lokalizować wąskie gardła wydajności i optymalizować kod w programach, które przetwarzają duże wolumeny danych. Lepiej też zrozumiesz zasady implementacji kodu Pythona. W książce poruszono takie zagadnienia jak architektury wielordzeniowe, klastry, skalowanie systemu poza limity pamięci RAM lub z wykorzystaniem procesorów graficznych. Zaprezentowano praktyczne sposoby radzenia sobie z różnymi wyzwaniami, przybliżono również optymalizację kodu Pythona w wielu realnych scenariuszach, w tym na przykład w sytuacji wyodrębniania danych generatywnej sztucznej inteligencji i uczenia maszynowego w wersji produkcyjnej.
W książce:
* narzędzia NumPy i Cython, a także narzędzia profilujące
* wyszukiwanie wąskich gardeł wykorzystania czasu procesora i pamięci
* dobór odpowiednich struktur danych, macierze i wektory
* przyspieszanie sieci neuronowych i obliczeń opartych na procesorach GPU
* zarządzanie wieloma operacjami obliczeniowymi i operacjami wejścia-wyjścia
* przetwarzanie współbieżne w klastrze
To lektura obowiązkowa dla każdego programisty Pythona!
Mikhail Timonin, projektant, Engelhart
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?