Elementy szczególnej teorii względności
-
Autor: Sokołowski Leszek M.
- ISBN: 978-83-235-5849-1
- EAN: 9788323558491
- Oprawa: miękka
- Wydawca: Wydawnictwa Uniwersytetu Warszawskiego
- Format: 240x170x30mm
- Język: polski
- Liczba stron: 530
- Rok wydania: 2023
- Wysyłamy w ciągu: 3 - 5 dni
-
Brak ocen
-
48,11złCena detaliczna: 67,00 złNajniższa cena z ostatnich 30 dni: 48,11 zł
x
Nowoczesny, zaawansowany wykład szczególnej teorii względności w ujęciu geometrycznym, przedstawiający najważniejsze zagadnienia tej teorii traktowanej jako zespół fizycznie zinterpretowanych twierdzeń geometrii przestrzeni Minkowskiego. Autor omawia konceptualne podstawy prowadzące do przypisania czasoprzestrzeni geometrii Minkowskiego oraz specyficzne własności grupy Lorentza, takie jak twierdzenie Zeemana, a także reprezentację tej grupy za pomocą grup SL(2,C) i SO(3,C). Przedstawia również relatywistyczną kinematykę oraz dynamikę, w tym pierwsze twierdzenie Noether (słabe prawa zachowania), pomiary w czasoprzestrzeni i najważniejsze tzw. paradoksy relatywistyczne. Szczegółowo opisuje (metodą Penrose’a) niewidoczność skrócenia lorentzowskiego w realistycznych obserwacjach. W uzupełnieniach podaje nowoczesne eksperymenty potwierdzające teorię Einsteina i jej związek z ogólną teorią względności oraz relacjonuje dyskusję kwestii spornych w obu teoriach: relatywistycznej koncepcji temperatury, identyfikacji punktów pustej czasoprzestrzeni, samą możliwość zmierzenia jednokierunkowej prędkości światła, nierelatywistyczną granicę teorii oraz sens fizyczny niezmienniczości Lorentza. W literaturze angielskojęzycznej książka określona byłaby jako graduate text in theoretical physics.
******
Advanced special relativity
This is a modern advanced exposition of special relativity in terms of geometry, presenting the foundations of the theory as well as deeper motivations for expressing it in the form of a physically interpreted system of theorems in Minkowski spacetime geometry. The author discusses empirical data and conceptual ideas, leading to Minkowski geometry in the physical spacetime, then provides a detailed exposition of specific properties of Lorentz group, such as the Zeeman’s theorem and the relationship of the group to SL(2,C) group and to SO(3,C) group. Two chapters deal with relativistic kinematics and dynamics, including the first Noether theorem. An extensive chapter concerns various spacetime measurements and the most important and famous relativistic ,paradoxes’. A special attention is devoted to the invisibility of Lorentz contraction in realistic observations applying the Penrose approach. Ten appendices present modern experiments confirming the theory, exhibit its relationship to general relativity and discuss some issues concerning both the theories, such as transformations of the temperature, identification of empty spacetime points, possibility of measuring the one-way velocity of light, the nonrelativistic limit of special theory and the physical sense of Lorentz symmetry. It is a graduate text in theoretical physics.